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Abstract. We study pattern formation in a quasi-linear system of two elliptic equations that was
developed by Short et al. [Math. Models Methods Appl. Sci., 18 (2008), pp. 1249-1267] as a model
for residential burglary. That model is based on the observation that the rate of burglaries of houses
that have been burglarized recently and their close neighbors is typically higher than the average
rate in the larger community, which creates hotspots for burglary. The patterns generated by the
model describe the location of those hotspots. We prove that the system supports global bifurcation
of spatially varying solutions from the spatially constant equilibrium, leading to the formation of
spatial patterns. The analysis is based on recent results on global bifurcation in quasi-linear elliptic
systems derived by Shi and Wang [J. Differential Equations, 7 (2009), pp. 2788-2812]. We show in
some cases that near the bifurcation point the bifurcating spatial patterns are stable.
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1. Introduction. The application of mathematics to crime modeling is a rather
new topic which is receiving increasing attention. Perhaps the recent work on residen-
tial burglaries [12] is the starting point for mathemasical modeling of crime. In that
paper a study of the dynamics of residential burglary hotspots was undertaken. The
problem of understanding hotspots arises because burglaries are often observed to be
clustered in certain neighborhoods. The dynamics of hotspots were modeled first by
using an agent-based statistical model based on the broken window effect and repeat
or near repeat victimization sociological effects. Those terms refer to the observation
that the rate of burglaries ol houses that have been burglarized recently and their
close neighbors is typically higher than the average rate in the larger community.

The agent-based model in [12] is based on the assumption that criminal agents
are walking randomly on a two-dimmensional lattice and committing burglaries when
encountering an attractive opportunity. An attractiveness value is assigned to every
house (point in the lattice), which measures how easily the house can be burgled
without negative consequences for the criminal agent. The criminal agents, in addition
to walking randomly, move toward aveas of high attractiveness values. In turn, when a
burglary occurs, it increases the attractiveness of the house that was burglarized and
those nearby. If no additional burglaries oceur, then the local attractiveness decays
toward a constant baseline value. Hotspots arise from pattern formation analogous
to that arising in reaction-diffusion models via Turing instabilities.
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In a second step, by taking a suitable limit of the equations for the discrete model,
one of which models the attractiveness of individual houses to burglary, and the other
of which models burglar movement, the authors of [12] developed a continuum model
based in a system of parabolic differential equations which they complemented with
periodic boundary conditions. They showed that the spatially constant equilibrium
can become unstable, so that pattern formation is possible. In [11] the authors did
a weakly nonlinear analysis of the equilibrium system from [12]. They performed an
asymptotic analysis by using perturbation techniques where they derived amplitude
equations governing the development of crime hotspot patterns in both the one dimen-
sional and radially symmetric two-dimensional cases, and found a suberitical pitchfork
bifurcation in the case of one space dimension and a transcritical bifurcation in the
radial case in two dimensions. They determined that the model supports hotspots
even in some parameter ranges where the spatially homogeneous equilibrium is sta-
hle. In [9] the authors obtained local existence and uniqueness for the time dependent
system from [12]. They also derived a continuation argument giving conditions that
would hinply global existence if they could be verified. They considered a generalized
version of a Keller-Segel chemotaxis model as a simplification of the model from [12]
and studied it as a first step toward understanding possible conditions for global ex-
istence versus blow-up of solutions in finite thme for the original model. In fact, the
models in [12] and especially [9] have structures that are similar to those of chemotaxis
models and their generalizations. For discussions of chemotaxis models such as the
Keller-Segel model, see [4,.5, 13].. The results in [13] include a bifurcation analysis.
Also, Shi and Wang treat a chiemotaxis model in one space dimension as an example
in [10]. The analytic approaches in those papers are similar in spirit to the one we will
take but differ considerably in their details. In [7] the author proposed a modification
t0 the model from [12] incorporating deterrence due to presence of police, obtained a
new system of partial differential equations, and performed numerical experiments on
it. Another class of models related to the distribution of criminal activity is derived
and analyzed in [1]. That paper also gives a nicely focused background discussion of
modeling criminal behavior.

The parabolic system from [12] is the starting point of this paper. In contrast
to [12] our boundary conditions will be of no flux type. We will use bifurcation
theory to rigorously prove that the equilibrium system does indeed support pattern
formation and to characterize to some extent the nature of the bifurcating patterns.
This complements the formal analysis in [11]. The bifurcation analysis is based on
gome recent results on global bifurcation in quasi-linear elliptic systems developed in
[10]. Moreover, we show in somne cases that near the bifurcation point the bifurcating
spatial patterns are stable.

Thus we begin by considering the problem

%—} =nAA—A+ A%+ pa in Qx (0,7,

(E) op =V. {Vp - ?—EVA}—/)A +A-AY in Qx(0,T)
ot A ' ’ ‘ T
A dp  2p0A o,
W = U, -,()7" - —7{ B =0 on 9 x (O‘T},

where 4 > 0 is the attractiveness, p > 0 is the density of potential burglars, n > 0
is the diffusion rate of attractiveness, AY > 0 is the intrinsic (static) attractiveness,
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A = )\ is the average attractiveness, and €2 is a bounded domain in RY of class C?+e.
Note that because of the boundary condition on A the bhoundary condition on p is
equivalent to the Newmnann condition 8p/dn = 0 on 9.

We are specifically interested in finding spatially nonconstant solutions of the
equilibrium problem

nAA - A+ A+ pA=0 in Q,
2 —
(BQ) & [V/) - 75-?7_4} —pA+A-AY=0 in Qx(0,7T],
OA dp
\—5;_0, 57;”0 on 0.

Associated with this problemn we will consider the problem

Au+pu=0 in £,

(LN) 5
U
— =0 on oM.
on,
We will be especially interested in the case where g > 0 is a simple eigenvalue. Clearly
4 18 not the principal eigenvalue in that case.
Throughout this work we will asswme the following hypotheses:

(1.1) > A0

A0 < {Wz - 2u)°
12p(np+1)

(1.2) n < 2 and .
Jt

We note that in addition to [11] and [12] , recent related work on the subject can
be found in [7] and [9].

This paper is organized as follows. In section 2 we formulate the bifurcation
problem and state our first main result, which gives criteria for the bifurcation of
of spatially nonconstant solutions of (E(Q) from the constant solution. In section 3
we determine the locations of bifurcation points. In sections 4 and 5 we verify that
the conditions needed to prove the main result are satisfied. In section 6 we state
and prove our second main result, which shows that in some cases the bifurcating
nonconstant solutions of (FQ) are locally stable equilibria of (E). In section 7 we
briefly describe our conclusions.

2. Setting of the problem and first main result. The system of ordinary
differential equations associated with the model is

dA

— A+ A4 pA
= —A+ A+ pA,
W AT AP,
dit

This system hag one critical point given by

0
(A, p) = (7?1 - f—i——) .

A
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Using this critical point we mal\e a shift of the variables in (F) by setting A

A~Aand p=p—7p, where p=1— —A— so that the critical point is now (4, 3) = (0,0).

Rewriting the differential equations in terms of A and j, we obtain

%f—r]AA—A—I—pA—i—pﬁl-l-Ap in £,

‘ p _ 2(p+7) N B R
(ME) B =V \Vp i1 A S U VYA| - pA-Ap—-PA in
94 _y, 26 _204P)0A_ 1 an,

an on A+ A On

We notice that since p = p+7 > 0and A = A+A > 0, the second boundary condition
becomes -gﬁ ={).

Thus, taking this fact into account and after dropping the tildes, problem (M E)
becomes

%—} =nAA—~A+pA+PA+Ap in Q,
, dp _ 2(p+p) -
(M P) T V. |Vp AT VA| —pA—Ap—-PA in
OA ap )
T = 0, = 0 on 00

In this paper we will be interested in studying stationary solutions for problem (M P).
By defining

40
nAA — A+ pA+ (1 - —;—) A4 Ap
(2.1) F(M\Ap)= 40 0 .
2 1
V . V/) — WVIX} had /3/1 A/) — (l hd :;l:\-‘> /‘1

where we have replaced A with A in the right-hand side of (MP) (this we will do
hencelorth), we obtain that the stationary solutions to this problem are the solutions
to the problem given by

F(A A, p)=0 in
EP
(EP) 9A 0 @

o =0 an-——() on Ol

We observe heve that (A, A, p) = (A, 0,0) is a solution to this problem for any A € R.
This motivates us to find nontrivial stationary solutions as a branch of solutions
bifurcating from a particular value of A. To this end we will use the following result
of Shi and Wang (see [10, Theorem 4.3]), which is a version of a well-known local
bifurcation theorem due to Crandall and Rabinowitz [2]. This version of the theorem
also gives conditions for global bifurcation of the type due to Rabinowitz [8] but recast
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in such a way that the result can be applied directly to quasi-linear elliptic systems
without first converting them to fixed point equations for compact perturbations of
the identity.

Let ) and Z Dbe real Banach spaces and V an open set in R x Y such that
(Ao, 0) € V. If A is a linear operator, then we will denote the null space and range
of A respectively by Ker(A) and R(A); dimension and codimension will be denoted
by dim and codim, respectively.

THEOREM 2.1. Let

F:V= Z

be such that F is continuously differentiable and salisfies the following: (a) F(A,0) =0
for all (A, 0) € V; (b} the partial derivative DFyy{(X,y) ewists and is continuous;
{c) for some (X,0) € V, R(DF,(Mo,0) is closed, dim Ker(DF,(X,0)) = 1, and
codim R(DF,(Ag,0)) = 1. Suppose further that (d) DFry(Ao, 0y ¢ R((DFy(Ae,0)).
where yy spans Ker(DF, (Ao, 0)).

Let W C Y be any closed complement of the one-dimensional space spanned by
yo. Then there exist an open interval Iy containing 0 and continuously differentiable
functions At Iy — R and & Iy = W with AM0) = Ag, £(0) =0, such that

F(A(8), syo + s€(8)) =0 for s € Ip.

In addition the entire solution seb for F(A,y) = 0 in any sufficiently small neigh-
borhood of (A, 0) in V consists of the line (N, 0) and the curve (\(s), syo + s£(s)).
Furthermore, if (e) DF,(\,y) ts a Fredholm operator for all (A\y) € V, then the
curve (A(s), syg + s£(8)) is contained in C, which is o comnected component of S,
where § = {{(A\y) € V: F(A\y) = 0,y # 0} and either C is not compact in V or C
contains a point (N*,0) with A* £ Ag.

In what follows we will prove that under certain conditions on the parameters of
the problem all the conditions of this theorem are satisfied for the problem (EP).

To this end we specify that in Theoremn 2.1 F = F as defined in (2.1), Y =Y,
V=V, and Z =Z, where Y, V, and Z are respectively defined by

. 2194  9p 3
o A A ',’ZVF Pt SR .
Y = {(A, p) € [n ( Q)] - =2e=0 on dﬂ} ,
A0 2
V= {(/\,A,p) ERXY [A> A +e,A> ~Ate,p> -/\——1}, Z= [LP(Q)] ,

where & > 0 is small and p > n.

Recall that W?2P(Q) embeds in C**(Q) if p > n, so the boundary conditions
in the definition of ¥ make sense. Note that for A > A° + ¢ we have 4 > =\ + ¢
provided that 4 > — A% so that the definition of ¥V does not unreasonably restrict A.
The restriction p > JXE — 1 is imposed because we identify A with A, and in the
application the quantity p+ 1 — ’-f: represents the density of criminals and so should
be positive. (Recall that we have shifted the variables from the original model.) The
restriction on p is not necessary for the mathematical analysis.

All of the parts of Theorem (2.1) except the global bifurcation results on C are
essentially the same as in the original formulation of the local bifurcation theorem of
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Crandall and Rabinowitz [3]. Thus, in applying those parts of Theorem 2.1 to our
system to obtain local bifurcations we could replace ¥ with

o 12 ] 84
{(A,p) € [CQT“(Q)] l = g—g =0 on 80}

and Z with
e @)]

The only requirement would be that we work in spaces where the elliptic operator de-
fined by DF,(Ag,0) is Fredholm with index zero and with zero as a simple eigenvalue.
That requirement is satisfied in both Sobolev and Hélder spaces. However, the argu-
ment developed by Shi and Wang to verify hypothesis (e) in applying Theorem 2.1 to
obtain global bifurcation in quasi-linear systems uses regularity results formulated in
Sobolev spaces. It might be possible to formulate analogous results in Hélder spaces,
but that is beyond the scope of this paper, so we set our theorem in Sobolev spaces.

The regularity results necessary to establish the Fredholm properties of DF, in
the setting of quasi-linear second order elliptic systems on Soholev spaces are discussed
in [10]. We will explain later why the results of [10] apply to our model, but we refer
the reader to that paper for a detailed discussion of the underlying regularity theory.

We will characterize possible bifurcation points for our model in terms of eigen-
values of (LN). For a given simple eigenvalue p of (LN), let ¢ be a normalized
eigenfunction corresponding to . Under suitable conditions on 1 and the parameters
in (EP), we will show that there is a bifurcation point \g for (EP) associated with s,
and that if Ay is such a point, then Ker(DF,()o,0)) is spanned by (Mg, (np -+ %?)(,f))
Thus, if we let £ be the linear functional on Y defined by

: 0
lp,q) = /m Pop + ('rm + %) q} b,

W=W={(p,g) €Y | {(p,q) =0}

f\
no
()

~—

then

is a closed complement of Ker(DF, (Ao, 0)) in V.

We will prove the validity of the following theorem, which is owr first main result
in this paper. Recall that we have identified the bifurcation parameter ) with the
parameter A in the original model.

THEOREM 2.2 (Arst main vesult). Suppose that i > 0 is a simple eigenvalue of
(LN) and that conditions (1.1) and (1.2) are satisfied. Let Ay > AY be a solution of

A% (e - 2) 1
3— —T ] — =0
A2 * A o i
such that ;’;% is not an eigenvalue of (LN). Then a branch of spatially noncon-

stant solutions of (2.1) bifurcates from the equilibrium, (Z, 1 - 4?:) at A = Ng. In

a neighborhood of the bifurcation point, the bifurcating branch can be parameterized
p— p— p—" a0 0

as (A, A, p) = (A(8), A(8) + sAoed + sE1(s), (1 — %:—)-) + s(np + %0—)(,/) + 8€2(s8)), where

# s o normalized eigenfunction of (LN) and (€1,&) € W, and where A(0) = Xy
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and (£1(0),&(0)) = (0,0). Furthermore, the bifurcating branch is part of o con-
nected component Cy of the sel S, where 8 = {(A, A,p) : (A, A—A,p—1+ %3) €
V.F(A,A-A p-1+ %‘;) =0,(A,p) # (A1~ i‘f;-;r')}, and Cy either exlends to infinity
in A, A, or p, or contains o point where (A, A — A, p—1+ "70) € OV, or contuins a
point (N, 4,1 — -i%) with A* # Ag.

Remark 2.3. 1If ‘:;\‘ﬁ is not an eigenvalue of (LN), then, in particular,

Mo
e

Remark 2.4. If any closed bounded subset of the set of solutions to F(A,y) = 01in
V is compact and the alternative that occurs in Theovem 2.1 is that C is not compact
in V, then C must either be unbounded or must leave V, but in the latter case since
C is connected it must contain a point in V. In our application of Theorem 2.1 to
prove Theoremn 2.2, that turns out to be the case.

In this respect we have the following lemma.

LemMMA 2.5, Any closed bounded subset of the solution set of (EP) in V is
compact.

Proof. Since p > n, it follows from the Sobolev embedding theorem that any
closed, bounded set of W2P(() is also closed and bounded in C***(£). Thus, for
(A, p) restricted to a closed bounded subset of the solution set of (EP) in V we have
that A and p are uniformly bounded in C'**(Q). Since

(2.3)

40
NAA=A—pA— (1 - i;—) A-XMp

and A satisfies a homogeneous Neumann boundary condition, it follows from Theo-
rems 3.1 and 3.2 and inequality (3.7) of [6, Chapter 3, section 3] that A is uniformly
bounded in C?*2(0). We have that p satisfies a homogeneous Neumann boundary
condition and the equation

e VA [20-4)
A+ A+

(2.4) VA

4()
+pA+/\p+< \>A.

Since A is uniforinly bounded in C?+(12), the coefficients and the right-hand side of
(2.4) are all wniformly bounded in C%(0), so that again the results of [6, Chapter 3,
section 3] imply that p is uniformly bounded in C*+()). Since [C?F<(f)]? embeds
compactly in [C*(€0)]?, which in turn embeds in [W27(0)]?, the conclusion of the
lemma follows.

Finally recall that the variables in (EP) are shifted from those of the original
sysi em (EQ) to move the equilibrium (4, 1 - —) to (0,0). We will apply Theorem 2.1

o (EP) and then retwrn to the original varm.bles to obtain Theorem 2.2. Thus we
will first prove the following result.

THEOREM 2.6 (first bifurcation result). Under the conditions of Theorem 2.2,
a branch of spatially nonconstant solutions of (EQ) bifurcates from the equilibrium,
(0,0) at A = Ag. In e neighborhood of the bifurcation point, the bifurcating branch can
be parameterized as

(A A,p) = ( (8). s o + sl (s e+ _—) *+ 55‘2(3)> )

where MO) = Ay, and where (€1, &) € W owith (£.(0),£2(0)) = (0,0).
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Furthermore, the bifurcating branch is part of a connected component Cy of the
sel S, where

S={(MAp) eV F(\Ap =0,(4,p)# (0,0},
and Cy either extends to infinity in X, A, or p, or contains a point where (A, A, p) € V,
or contains a point (\*,0,0) with A* # Ap.

3. Searching for possible bifurcation points. We begin by noticing that F
as in (2.1) clearly defines a differentiable mapping from V to Z.
By linearizing FI(A, A, p) with respect to (4, p), we find

(8.1)  DFa (A A, p)u,v)

40
nAuw —u+ pu+ Av + (1 - i;—) U A
2v Ab Vu uVA
= v — A-2(p+1-= -
(V {V"’ TeaA (”“ ) ><A+,\ (A+>\)2>J

AV
—pu— Av — <1 = \.> U — /\v>

It is clear that D4 (A A, p) is a bounded operator from Y to Z that is con-
tinuous and differentiable with respect to A, A, and p in V. Evaluating at (A, 0,0),
after some computations, we obtain

AO
nldy — U + Av

2 AP AP
Dy — = - e U—{ 1= u—Av
v /\(1 A)Au <l /\>u AU

It is straightforward to compute the linearization DFy\ (A, 4, p) of F with respect
to A, and it is clear that DF\(A, A, p) is continuous and differentiable with respect to
A, A, and pin V. Since we do not need to use DF\(\, A, p) directly, we do not show
it here.

For bifurcation from a particular value of A, we need the implicit function theorem
to fail. Thus we need the mapping DFi4 (A, 0,0) to have a nontrivial kernel for that
value of A; in other words this mapping must have sero as an eigenvalue.

To identify these A's, we search for nontrivial solutions pairs (u, v) for the problem

(3.2)  DFpan(A0,0)(u,v) =

40
nAU — '—/l{-'u, +A =0 in Q
2 0 AP
(LE) 1 (1 — %) Du— DAy + (1 - —i—) u+dv=0 in
& . o o
'(‘977? = O, 5; =0 on €.

1t follows from classical results on partial differential equations that for any pair of
functions (u,v) € Y both w and v can be expanded as series of mutually orthogonal
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eigenfunctions of (LN) multiplied by constant vectors. If (u,v) is nonzero, then the
coefficient of at least one of those eigenfunctions in at least one of those expansions
must be a nonzero vector. Suppose that ¢ is such an eigenfunction, corresponding to
an eigenvalue p, and normalized by

/ ¢* =1.

Ja

(3.3) U= / udp and V= / v,
Ja

S0

Define U and V by

Multiplying the first two equations in (LE) by ¢ and integrating over §2, using the
boundary conditions, and taking into account that

(3.4) OYANTRES —-p,/ pu=—pU and / VAN —/.L/ P = —pV,
o Q Q )

we are led to the following linear system for U and V-
40

— b — '/\ A U

21 ,'0 0
() (1-2) ] L0

To have nontrivial solutions (nontrivial U, V), we set

Al
—mp— A
N4t /\
(3.6) =0,

2 40 AU
2 (. . y
-l 1= —A—-u
X ( X ) ( X ) ’
which gives the following velationship between the parameters involved:

AV (-2
A =2

(3.7) 353 :

1
+n+—=0.
Iz

Sctting A = % this relationship can be seen as a quadratic equation for A, namely
(3.8) p(A) = 3AYUA® + (e — 2)pA +qp +1 =0,

If this equation is satisfied, then (3.5) will have a nontrivial solution (U, V). In that
case a nontrivial solution (u,v) of (LE) is given by

(3.9) w=U¢ and v=Ve

We will see that for those values of A\ where the remaining hypotheses of Theorem 2.1
are satisfied all solutions of (LE) must be of that form.

A simple calculation shows that p(A) has a positive root if conditions (1.2) are
satisfied. Actually, under these conditions both roots of p(A) will be positive. Notice
that the second inequality in (1.2) can be set as an equality and still p(A) will have
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positive roots. We assume the strict inequality for reasons that will become clear
rather immediately.
From (3.8), p(A) has a double root if and only if

(e = 21)? — 4(3A%) (e + 1) = 0.

This is not possible by the second condition of (1.2), and thus, under (1.2), p(A) has
two simple positive roots.
On the other hand, by evaluating the first derivative of p(A), we find

/ x40 6AY
P (A= (6AA+nu—2p = BN +np—2) 1,

where we have replaced A by —f\- Since at a root of p(A) necessarily p'(A) # 0, it must
be that at that root

. 640
(3.10) T+T}/J,—2750,

This condition will appear again later in a crucial form.

In summary, under conditions (1.2) we can determine a pair of positive roots of
p(A\). For each of these roots the pair (u,v) given by (3.9), where (U, V) satisfies (3.5)
and ¢ is an eigenfunction to problem (LN), satisfies (LE).

Furthermore, for each root A, (A,0,0) will be a possible bifurcation point for
problem (EP). To actually have a bifurcation point we need to verify that conditions
(¢} and (d) of Theorem 2.1 are satisfied for that value of A. This we will do in the
next two sections.

4. (c) and (e) of Theorem 2.1. In this section we seek conditions for the
validity of (¢) and (e) of Theorem 2.1. Suppose that A = Ag is a positive root of
p(A) as above. To verify (¢) we begin by looking for conditions among parameters for
Ker(DFE(a,,(X0,0,0)) to be one-dimensional, in other words, for the dimension of the
linear space of solutions of problem (LE) to be one-dimensional.

By multiplying the first equation of (LE) (with A = Ay) by —?\;(1 - -’f\‘—:}) and
adding to the second (with A = )\p), we obtain that problem (LE) can be recast as
thie systemn

A cu .
(4.1) L\v} + A LJ =0 in 0,
du dv o

4.9 e = { RE—— . -
(4.2) o 0, 5 0 on 99,
where M i3 the matrix

B Al Ao

NAo i

(4.3) M= v
240 +1){1 A 2 1 A A
NG Ao 7 Ao 7o

Using {2.3) and (3.7), we have that A has the two different positive real eigenvalues

gy = pand o9 = 7}% where we recall that p is a simple eigenvalue of problem (LN).
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Denoting by I the matrix whose columns are the eigenvectors corresponding to o3
and og, respectively, we find that

K”MK:FlO}
0 g9

Thus by setting

-l

we have that (4.1) can be uncoupled, and we obtain

e Dw o 0wl .

(4.5) [AU} + [0 Uz} [yJ =0 in

(4.6) g Wy oon en.
an on

Thus, by the hypothesis that -l)-;% is not an eigenvalue of problem (LN}, we have y = 0,
and since oy = is an eigenvalue of (LN), we obtain that w = C¢, where C is a
constant. From (4.4), it follows that

(4.7) u=Ci¢, v=Cad,

where Cy, Cq are constants and hence that Ker(DF4 (g, 0,0)) is one-dimensional.
The constants C; and Cy, respectively, are the same as U and V in (3.3).
We notice that by the first equation of (3.5),

Al
(4.8) o — (77# -+ T) Cy + AClh = 0.
. 0

We now turn to condition {(e) in Theorem 2.1. Following the discussion of exam-
ple 4.2 in [10], we can write (EP) as

(4.9) , —A (A A p)[AA Op)t + g\ A p, VA, V) =0,
where

1 0
(4.10) Aj(\ A, p) =

C2p+ (-4
.'"1“‘1"/\

Similarly, we have
DE 4 (A A p)(u,v) = Ay (A A, p)[Du, Av)t + lower order terms in (u, v).
Thus, 4; defines the principal part of the elliptic operators in (EP) and DFa 5
(A A, p). The matrix A; has the structure that is needed to satisfy [10, Remark 2.5.5,
case 3]. It follows that Definitions 2.1-2.4 of [10] are met provided
n+o 0

(4.11) 40

C2p+ (1= 4)

A+ A 1+o
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for (A, A, p) € V, where c € C and 0 = 0 or arg o € [~5, §]. Since the determinant
in (4.11) is equal to (n+0)(1+0a), (4.11) is indeed satisfied for such o. Thus, Agmon’s
condition (see [10, section 2]) is satisfied, so it follows from Corollary 2.11 of [10] that
DFi4,p(A A, p) is Fredholm of index 0 for (A, A,p) € V as needed. (See also the
arguments used in [10, Example 4.2], specifically Theorem 3.3 and Remark 3.4.)

Since we have already established that Ker(DFa (X0, 0,0)) is one-dimensional
and that DF, (A, A, p) is Fredholm of index 0 for (A, A, p) € V, it follows that codim
R(DF,(A\o,0)) = 1. That observation completes the verification of condition (c) of
Theorem 2.1.

5. (d) of Theorem 2.1. Let us define

40
Yo = </\o<f)-, (77# + %}—)cﬁ) .

Then, from (4.8), it is clear that yo is a generator of Ker(DF(4 (Ao, 0,0)). From
(8.1), we obtain

(5.1)
oo AO -
U +v

N2
2v A Vu  uVA
i N A e Qe -
(V{(A + /\)gv A2 <A+,\ (A+ ,\)2>
_9< H_éﬂ) ~Vu_ VA
a1 p ,\ (‘dl + /\)‘Z (:,1 - /\)3

A0 )
— il = U
e

DFya.nA A, p)u,v) =

A()
—5 U+ U
. AG
(5:2)  DFyan(\,0,0)(u,v) =
2 . 2AY A AO'
X(Z, " u /\% U — U
Finally
249
/\—0 + 7
(5.3) DFya,0(A0,0,0)y0 =

2 (1 2/—1") 7/&‘)
- — )L — 2= — 1
Ao Ao / Ao s
Next we want to show that
(5.4) DFya,0)(A0,0,0)y0 € R(DF4,,0(M0.0,0)).

We argue by contradiction and suppose that there are w,v such that

(5.5) DF4,,)(M,0,0)(u,v) = DFy(a,,) (M, 0, 0)yo,
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which is equivalent to

0 2 0
nAu ~ —A—u + Apv = -——A—-— +np)é in Q,
Ao Ao

2 [, A° AL
Av———(l—- >Au-—<1~-—-—>u~/\v
/\Q /\() ’\0 0

2 240 2‘40 n O
= - <X§ <1—70—>/,a+ 7\;+77u>r/) n i

du. v .,
= 0, B = 0 on 8.

(51)

Using U,V as in (3.3), we can see that by multiplying the first two equations in (Sy)
by ¢, integrating, using the boundary conditions, and taking into account (3.4) we
obtain the following algebraic system for U, V:

(5.6)
0 9 AD
- (/\0 + 7/;.1) : Ag U " + i
5 A v | % ( 2A°> A0
B ' Mo :
——-1)[1- —(Aa+p e | 1 e | Do
<)\0 > ( /\0> (ot 1) Ao Ao o M

By (3.6) the determinant of the matrix of coeflicients on the left-hand side of this
system is zero. Then for this system to have a solution it must be that

240 2 240 Al
Mo+ [ =)+ (£ (1= 2 ) =
(Ao + 1) < T -+ I}//) + Ag (/\0 <1 " ) + " + r/,u) 0,

which after some simplifications yields

.A()
L <77,u. -2+ 9—-—) =0,
Ay

which is not possible by (3.10). Thus (5.4) holds.
Finally, since all the conditions of Theorem 2.1 are satisfied we lhiave proved the
validity of Theorem 2.6 and hence the validity of our first main result, Theorem 2.2.

6. Stability analysis of the bifurcation branches and second main result.
Owr second main result concerns the stability or not of the spatially inhomogeneous
patterns ol attractiveness and density of burglars that arise from the homogeneous
patterns (A, 1 - ’%\n) at A = )y. Heve, stability refers to the stability of these in-
homogeneous 1‘)a,ttl<fn'us viewed as equilibria to (E). To this end we will employ the
classical results of Crandall and Rabinowitz [3] on bifurcation, perturbation of simple
eigenvalues, and lnearized stability in conjunction with an analysis of the spectrum
of the system.

Recall that Corollary 1.13 in [3] implies that if X'(0) # 0, where A(s) = A(s) as
in Theorem 2.2, then the eigenvalue o(s) of the linearization of (2.1) at the point
corresponding to

: A(.)
</\(s), sho@p + 581(s), 8 <"I/»1‘ + T) &+ 5‘62(3))

4]
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changes sign at s = 0. In particular, for s on one side of zero, a(s) < 0. (Note
that in [3], p(s) is used to denote these eigenvalues. In our work, we have used
it to designate eigenvalues of —A on the underlying spatial domain Q, subject to
homogeneous Neumann boundary conditions.)
Jonsequently, it is the case that if ¢(0) is the largest eigenvalue of the linearization

of (2.1) at (Ag,0,0), then a{s) < 0 is the largest eigenvalue of the linearization of (2.1)
ab (A(s), A(s), p(s)) for either s > 0 and small or s < 0 and small. As a result, in such
a case, some of the inhomogeneous patterns that arvise at A = Ag are in fact stable
when viewed as equilibrium solutions to (E). Now the eigenvalues of the linearization
ol (2.1) depend on the eigenvalues i of —A on £ subjected to homogeneous Neumann
boundary data. Moreover, different values of 1 may be associated with the eigenvalues
for a particnlar linearization of (2.1). Consequently, obtaining that 0 = ¢(0) is the
largest eigenvalue of the linearization of (2.1) at (Ao, 0, 0) requires a closer examination
of its spectral properties viz-a-viz thé eigenvalues p.

We have the following result.

THEOREM 6.1. Suppose thot 1 is the eigenvalue of — A appearing in Theorem 2.2,
with normalized eigenfunction ¢. Suppose further that the hypotheses of Theorem 2.2
are satisficd. [f 11 5 Ag, /(2 PP # 0, and there is no eigenvalue of —2\ other than

in the closed interval with endpoints 1 and \g + /\'_;; then the branch (A(s), A(s), p(s))

of solutions of (EQ) bifurcating from the spatially constant equilibrium (A, 4,1 — -’%)
at A = Xy 45 stable either for s > 0 and'|s| sufficiently small or for s < 0 and |s|
sufficiently small. )

Remark 6.2. By (3.7), A\g + /%% = -,27 — 3% — Ap — 4, so that the closed interval
with endpoints o and Ag + %,% is contaiued in the interval (0, %)

Remark 6.3. In the cases where £ is an interval or a Cartesian product of intervals,
the eigenfunctions of —A will have odd symmetry so that j“ ¢3de = 0. However, in a
circular region, the radially symmetric eigenfunctions of the form ¢ = Jy(\/fir) arising
from Bessel functions have /(2 ¢Bdx 0 in some cases, so our stability analysis would
apply in that setting. The key idea in the proof of Theovem 6.1 is that the hypotheses
imply that the bifurcation at Ap is transcritical, from which it follows from results of
[3] that the eigenvalue of DF(, ,)(A(s), A(s), p(s)) that is zero at s = 0 (that is, at
(A(s), A(8), p(8)) = (Mg, 0,0)) changes sigu as s passes thorough 0. If that eigenvalue
is the largest eigenvalue of DF(4 ,1(Ag,0,0), which the hypotheses of Theorem 6.1
also imply, tlen it follows that the largest eigenvalue of DFa ) (A(s), A(s). p(s)) is
negative either for s < 0 and |s| sufficiently small or for ¢ > 0 and || sufficiently small.
The conclusion that the direction of bifurcation is transverse in some radial cases but
is not necessarily transverse for intervals or rectangles is consistent with the results of
the asymptotic analysis in [11], which indicate that the bifurcation of spatially varying
solutions is of pitchlork type if £ is an interval but can be transcritical in the radial
case. The eigenfunctions of —A on the disk that have nontrivial dependence on 0 will
have odd symmetry about some line so that ]Q d*dr = 0 and hence will give rise to
a “vertical” bifurcation. It would be of interest to determine whether the bifurcation
is of pitchfork type in those cases but that is beyond the scope of this paper.

Proof of Theorem 6.1. The branch of solutions (A(s), A(s), p(s)) of (EQ) will be
stable if the corresponding branch of solutions to the translated problem (EP) are
stable in (A P). This will be the case if all eigenvalues of DF(, ,)(A(s), A(s). p(s))
are negative.

From Corollary 1.13 in 3], there exist intervals I,.J with Ag € I, 0 € J and
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continuously differentiable functions v : JJ = R, o + J = R, (ug,ug) : [ = Y,
(w1, we) : I = Y, such that

(6.1) DF(a,(),0,0) [ - } = () [ - } ,
09 DRapON@A.A) | o =t | 2],

such that
AO) =20, 7(A) =0(0) =0, (w(A),ua(A)) = (w1(0),w2(0)) = yo,
where as before yo = (Moo, (7p + )(/5) and
(w3 (N ua(N) = 4o € W, (s (s), wals)) — yo € W,

We will show that the hypotheses of Theorem 6.1 imply that all eigenvalues of
DF 4 (M, 0.0) other than that ¢(0) = 0 must be negative. The eigenvalues of
DEF 4 (Als), A(s), p(s)) will thus be negative for |s| small provided o(s) < 0.

By assumption (1.2), we have as in [3, Theorem 1.16] that v/(\g) # 0. By formula
(1.17) of [3] we have that o(s) is not zero for all s # 0 with |¢| sufficiently small and
o(s) changes sign at s = 0, provided A (0) s 0. In that case o(s) < 0 either for ¢ > 0
and |s| sufficiently simall or for s < 0 and |s] sufficiently small.

We now proceed to calculate A'(0). To do so, we substitute

0
(NA p) = </\( L SAg + s€1(s), s ( 0+ -f%——) o+ .952(3)>

in F(A, A, p) =0, where F is as in (2.1). We ditferentiate the resulting equations with
respect to s twice, and set $ = 0. We obtain after some lengthy calculations that
(6.3)

AV

nAA"(0) — —
g 0) Ag

A"(0) + Aop”(0) + 2 <p'(o)A'( )+ /\—/\’( JA'(0) + /\'(O)p'(())) =0,
0

2 A() 1() .
V. [Vp"(()) ™ <1 - 33) VA”(O)} - <1 -~ —A;) A"(0) = Aop"(0)

. L AN\ AN0)  XN(0) 240 o a7
+V[;—\-{;\‘A (0) <—p(o)+<1—/\0> v ¥ A(O)H (p(O)A(O)

(6.4) —1-~—A( )A'(0) + N (0)p' (0 )) = 0.

2
\0

Simplifying (6.4), we get

2 AY A0 1140 1"
— <‘l - ——-—) AA"0) - Ap"(0) + (1 - —/\——> A"(0) + Aop"(0)

/\() /\() 0
/ ! / y 0
-v. [-/;—LO-VA’(O) <——/)'(0) + (1 - ,\0> &y + “\I((?‘) “/\é ,\’(O)ﬂ +2 (p’(O)A’(O)
(6.5) )\L:/\’ YA (D) + ,\’(())/)’(0)) = 0.
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We next multiply (6.3) and (6.5) by ¢ and integrate over 2. Then using integration
by parts and simplifying, we see that the terms in the resulting equations involving
A"(0) and p”(0) are given by

A°
I A
i N 0 fﬂ (/)A”(O)
(66 0 0
2 ( A ) ( A ) [ ¢p"(0)
{1l —{1=— ~Ag — Jb 48
Ao Ao Ao o

By (3.6), the determinant of the coefficient matrix in (6.6) is zero; also [Ag + p, Ag) is
a left eigenvector corresponding to the eigenvalue zero. Consequently, if we dot the
resulting equations on the left by [Ag + 1, Ao} and use the fact that this vector is a left
eigenvector of the matrix in (6.6) corresponding to the eigenvalue zero, we obtain the
following equation for A'(0):

(6.7)
o [ 6(#OX0+ HNOL0+X00)
o / na {-\4‘—%«;'(0) (—p/(D) + (1 - ff) A0 X 24 A'(O)ﬂ ~0.

0 Ao Ao/ Ao Mo Py

One may check from the delinition of yo that A’(0) = A\p¢ and p'(0) = (nu-+ %)gﬁ.
Substitute these expressions into (6.7). By assumption /Q ¢® = 1. Moreover,

" 9 1 f o 1 o 1 .
Aol =5 | Vo) =5 [ #ae=3u [ o
Jo 2 Ja 2 Ja 2" Jn

Using these [acts, (6.7) reduces to

124 e 2A"’ﬂ {3;&0 -
("8 2 — had — 5 /\/ O — ____+2,~‘1} / ‘3.
(©8) l </\0 Ao ) ()\() A5 (0) o T Q(b

By (3.7),

3AY A
2 -2+ A+ 22 =0,
Ay i

50

349 1,
+2np— 1= /—I(W + D) {1 — Ao),
0 1

which is different from zero if 4 5% \g. Hence if g # Ay and /D ¢ # 0, it follows that
N(0) 5 0.

We will now verily that under suitable conditions the eigenvalue o(0) = 0 of
the linearized operator DFia 5(A, A, p) at (A, 0,0) is in fact the only nonnegative
eigenvalue of DF(, (. 0,0), and hence is the largest eigenvalue. The eigenvalue
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problem has the form

0
nAu — A\ u+w=0u in £,
0 0
(6.9) ; <1 - f;—) Du— Av+ (1 - AT> u+Aw=9gv in £,
ou Ov .
\F)_v—;—()’ B—;—O on 090,

Suppose that A and 3 are 2 x 2 matrices aud @ is a vector valued function such that

(6.10) ADT + Bd = ol
Recall that o has a componentwise expansion in orthonormal eigenfunctions ¢ of
-4 with Neumann boundary conditions as @ = D72 ¢y, and substitute that
expansion into (6.10). Let u; denote the eigenvalue for ¢. If ¢ is an eigenvalue of
(6.10), then w; # 0 for some 4. Multiplying (6.10) by ¢;, integrating over Q, and
using orthogonality yields ow; = —Au0; + Bw;. It follows that any eigenvalue o of
(6.10) can be expressed as an eigenvalue of the matrix —Ap; + B for some eigenvalue
pi of —A. Conversely, any eigenvalue p; of —A will lead to two (not necessarily
distinct) eigenvalues of (6.10) corresponding to the eigenvalues of —Ap; -+ B. The
malbrix equation determining sucl: eigenvalues for (6.9) is

AO
I A 7 U
G6.11 =0
) Wl AN (LA -\ v v
! ) ) ) ATH

To find o we compute the determinant of the matrix obtained by subtracting oI from
the matrix on the left of (6.11) and set it equal to zero. After simplification that
vields

0

(6.12) o? + <*r);41. + f—)\— + A+ u) o+ CuA) =0,
where
40 s — 92
C{p. A) = pA 3—i,~ + (i =2) + 7+ 1
v g - 4
(6.13) A A '

- 4(_)
=’ + <5T -2+ A’r}) b A

At the bifurcation point (A(0), A(0), p(0)) = (Xg,0,0) we have o = 0 as an eigenvalue
of (6.11), so i uy; is the associated eigenvalue of —A, then we have C{u;, Ag) = 0,
which recovers (3.7). The second eigenvalue o associated with u; is negative. If we
think of C(x, M) = 0 as a quadratic in j, then we can compute the second root u}
by factoring p — p; out of the equation C{u, Ag) — C(py, Ao) = 0. That yields

2 LAY Ao
6.14 = 2 8l Ny - s = A 20
( ) H 0 o 0~ fij 0+ p
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where the last quantity follows from (3.7). Clearly uj € (0, ;2; . (Note that in general
j¢5 is not an eigenvalue of —A.) If there is no eigenvalue p; # p; of —A lying in the
closed interval with endpoints u; and O then all eigenvalues o of DFi4 (M, 0,0)
arising from eigenvalues of —2 other than u; will be negative, so that ¢(0) = 0 is the
largest eigenvalue of DF( 4 5y(Ag,0,0).

The closed interval with endpoints p; and g} is contained in the interval (0, %),
$0 in particular this will be the case if there are no eigenvalues of —A in (0, %) other
than ;.

7. Conclusions. We have established that under suitable conditions on the pa-
rameters, branches of spatially heterogeneous solutions to the model (EQ) bifurcate
from the spatially constant equilibrium. The bifurcations arve global, so roughly
speaking the solution branches must either connect with each other, persist for an
unbounded set of parameter values, or the solutions must grow in such a way that
they leave the region in state space where the bifurcation analysis is formulated. In
any of those cases the bifurcating branches will include solutions at some distance
from the points where they bifurcate. Near a bifurcation point the spatial variation
in the solutions will be close to that of the eigenfunction of the Laplacian associated
with that bifurcation point, so that peaks in that eigenfunction would correspond
to hotspots. However, the pattern may change as the branch moves away from the
bifurcation point. Moreover, under additional assumptions on the geometry of the
undlerlying spatial domain, we have shown that near the bifurcation point, some of
these branches include solutions that are stable when viewed as equilibria to the cor-
responding time dependent problem. The geometry of the domain enters into the
conditions for stability in terms of hypotheses on the eigenvalues and eigenfunctions
of the Laplace operator with Newmann boundary conditions. Specifically, these con-
ditious are satisfied in some cases for radially symmetric solutions on a disk. In that
case the bifurcation is transcritical. In the cases where the underlying domain is an
interval or rectangle, the bifurcation is “vertical.” These observations are consistent
with those obtained by asymptotic analysis in [11]. .

The analysis in the present paper compliments and in some ways expands upon
that of [11]. On the mathematical side, our results are mathematically rigorous, as
opposed to the formal perturbation analysis in [11]. They include global bilurcation
results as well as a local bifurcation and stability analysis. Our methods allow us to
treat the case of no-flux boundary conditions on general domains. That extends the
scope of the analysis beyond that ol [11], which is based on case by case computations
that use the explicit formulas for eigenfunctions in specific geometries. (The results
in [11] treat vadially symmetric solutions on a disk with no-flux boundary conditions
and spatially periodic solutions in one dimension or in two dimensions in the cases
of symmetries arising from periodicity relative to square or hexagonal tilings of the
plane.) On the applied side, the fact that we consider no-flux boundary conditions on
general domains means that our results imply relationships between the size and shape
of the underlying spatial region and the nature and stability of the spatial patterns
that the models can support. The bifurcation points for the model are determined
by eigenvalues of the Laplacian under Newnann boundary conditions. That observa-
tion provides a starting point for developing a “sociogeographic” description of crime
patterns analogous to biogeographic descriptions of ecological communities. As noted
previously, near a bifurcation point, the spatial pattern generated by the model is ap-
proximadtely that of the velevant eigenfunction of the Laplacian. For pattern formation
in general, only the nonzero eigenvalues are relevant because they have nonconstant
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eigenfunctions. By condition (1.2), the only relevant eigenvalues for this model are
those that are sufficiently small. Domains of a given shape can be parameterized as
Qp = €Qy, where 0y is some specified domain and ¢ represents a linear scale factor.
On such a family of domains, the nonzero eigenvalues of the Laplacian scale as 1/¢2,
so larger domains will typically have higher eigenvalues that still satisfy the frst in-
equality of (1.2). Since the eigenfunctions associated with higher eigenvalues typically
have more complicated spatial patterns than those associated with lower eigenvalues,
it thus would be expected that for larger regions the model could potentially support
more complicated patterns of criminal activity, which for at least some parameter
ranges would be described by the patterns of the relevant eigenfunctions. Thus, our
results provide a rigorous mathematical framnework that allows a broader and deeper
study of the patterns of burglary predicted by the model, particularly as they relate
to the size and shape of the spatial region upon which the model is formulated.
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proved the paper.

REFERENCES

[1]  H. BERESTYCK! AND J.-P. NADAL, Self-organised crilical holspols of criminel activity, Buro-
pean J. Appl. Math., 21 (2010), pp. 371-399.
[2] M. G. CrANDALL AND P. H. RABINOWITYZ, Bifurcation from simple eigenvalues, J. Funct. Anal.,
8 (1971), pp. 321-340.
[8] M. G. CRANDALL AND P. H. RABINOWITZ, Bifurcation, perturbation of simple eigenvalues and
tinearized stabilily, Arch. Ration. Mech. Anal., 52 (1973), pp. 161-180.
T. HiLLen anD K. 1. PAINTER, A user’s guide to PDE models for Chemotazis, J. Math. Biol.,
58 (2009), pp. 183-217.
D. HorsTMANN, From 1970 until present: The Keller-Segel model in chemotawis and its con-
sequences, I, Jahresber. Deutsch. Math.-Verein., 105 (2003), pp. 103-165.
[6] O. A. LapyZHENSKAYA AND N. U. UnaL'TSevA, Linear and Quasilinear FElliptic Equations,
Academic Press, New York, 1968,
A. B. Prrener, Adding police to o mathematical model of burglary, Buropean J. Appl. Math.,
21 (2010), pp. 401-419.
P. H. RapinowiTz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7
(1971), pp. 487-513.
N. Ropricuiez AND A. L. BErTOZZ, Local ewistence and uniqueness of solutions to o PDE
maodel for eriminal behavior, Math. Models Methods Appl. Sci., 20 (2010), pp. 1425~1457.
[10] 1. Sur anp X, WANG, On global bifurcation for quasilinear elliptic systems on bounded domains,
J. Differential Equations, 7 (2009), pp. 2788-2812.
[11] M. B. Suorr, A. L. Berrozzt, AND P. ). BRANTINGHAM, Nonlinear patterns in wrban crime:
Hotspats, bifurcotions, and suppression, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 462-483.
[12] M. B. Suorr. M. R. D'ORrsoGNAa, V. B. Pasour, G. E. Tita, . J. BRANTINGHAM, A. L.
BERTOZZI. AND L. B. CuAYES, A statisticul model of criminal behavior, Math. Models
Methods Appl. Sci., 18 (2008), pp. 1249-1267,
(18] X. Wanag, Qualitutive behavior of solulions of chemotactic diffusion systems: Effects of motility
and chemotuzis and dynamics, SIAM J. Math. Anal., 31 (2000), pp. 535-560.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



